
工业机器人技术应用

前言

工业机器人技术是高等院校机电一体化、电气自动化、工业机器人等专业的一门核心课程。学好工业机器人对从事自动化技术工作有重要作用。为适应应用型技术人才的培养工作、依据教育部有关落实《国家职业教育改革实施方案》的相关要求,以客观反映现阶段行业的水平和对从业人员的要求为目标,响应 1+X 证书培养制度,本教材以《工业机器人操作与运维职业技能等级标准》的职业素养、职业专业技能要求等为依据,以工作项目为模块,结合行业需求和我校人才培养方案、学校现有 1+X 工业机器人操作与运维实训条件编写了本书。

本教材的主要内容包括工业机器人基础知识、ABB 机器人仿真与离线编程、KUKA 机器人操作与编程、埃夫特工业机器人拆装与应用、工业机器人系统维护与维修 5 个章节。通过详细的图解实例对工业机器人本体、ABB 机器人、库卡机器人、埃夫特机器操作编程与应用进行讲述,明确操作规程、操作方法等,从而在保障学生人身安全的同时也避免了误操作对设备的损害。本书注重理论与实际的结合,充分考虑了高等学校学生的特点,在理论完整的前提下,内容力求深入浅出,注重学生能力的培养,帮助学生树立工程意识。

本教材可用于 1+X 证书制度试点教学、中高职院校工业机器人专业、机电一体化专业、中高职衔接机电一体化专业的工业机器人课程教学。

本书由朱冬任主编,向浪、李权任副主编,赵颖、陈育新、涟源市工贸职业中等专业学校谢良雄、冷水江工业中等专业学校孙婵娟、涟源市工贸职业中等专业学校陈苏娟参编。朱冬、陈育新对本书的编写思路与大纲进行了总体规划,指导全书的编写。其中李权负责项目一工业机器人基础知识,谢良雄负责第二章 ABB 工业机器人操作与编程,向浪负责第三章 KUKA 机器人操作与编程,孙婵娟负责第四章埃夫特工业机器人操作与拆装、赵颖、陈苏娟负责第五章工业机器人系统维护与维修。本书在编写过程中参考了大量文献和著作,在此向相关作者致以诚挚的谢意。另外,期待专家与读者对书中的错误和不足之处提出宝贵的意见,以便本书的进一步修改和完善。

编者 2020年12月

目录

项目一	工业机器人基础知识	1
1.1	概述	1
	1.1.1 工业机器人的定义和基本组成	1
	1.1.2 工业机器人的技术参数	3
	1.1.3 工业机器人的分类	6
	1.1.4 工业机器人的发展现状及应用	7
1.2	工业机器人的机械系统	. 11
	1.2.1 工业机器人机械本体组成及要求	. 11
	1.2.2 工业机器人的手部	. 12
	1.2.3 工业机器人的基座	. 13
	1.2.4 工业机器人常用传动部件	. 14
1.3	工业机器人安全操作规程与防范措施	. 17
1.4	考核评价	. 20
1.5	思考与习题	. 20
项目二	ABB 工业机器人操作与编程	. 22
2.1	任务一 ABB 工业机器人认知	. 22
	2.1.1 ABB 工业机器人控制系统简介	. 22
	2.1.2 ABB 机器人示教器介绍及基本操作	. 24
	2.1.3 RobotStudio 软件界面介绍	. 28
2.2	任务二 ABB 工业机器人基本操作	. 30
	2.2.1 搭建 ABB 工业机器人最小系统	. 30
	2.2.2 手动操作 ABB 工业机器人	. 35
	2.2.3 建立 ABB 工业机器人坐标系	. 46
2.3	任务三 ABB 工业机器人程序的编写	. 53
	2.3.1 ABB 编程环境	. 53

		2.3.2 常用指令
		2.3.3 创建程序模块65
		2.3.4 机器人编程实例68
	2.4	任务四 ABB 机器人搬运装调案例实施77
	2.5	考核评价81
	2.6	思考与习题
项目	三	KUKA 机器人操作与编程 82
	3.1	任务一 认识 KUKA 机器人82
		3.1.1 KUKA 机器人系统的结构和功能
		3.1.2 KUKA 机器人的机械系统
		3.1.3 机器人控制系统 KR C4
		3.1.4 KUKA smartPAD
	3.2	任务二 库卡机器人手动操作88
		3.2.1 坐标系的建立及选择
		3.2.2 手动运行机器人
		3.2.3 TCP 测量
		3.2.4 对 PTP、LIN、CIRC 运动进行编程93
	3.3	任务三 TCP 练习模块97
	3.4	任务四 KUKA 机器人程序编写 103
		3.4.1 KUKA 机器人程序数据 103
		3.4.2 KUKA 机器人编程语言
	3.5	任务五 库卡机器人搬运码垛案例实施113
	3.6	考核评价118
	3.7	思考与习题
项目	四	埃夫特工业机器人操作与拆装120
	4.1	任务一 认识埃夫特工业机器人120

4.2.1 埃夫特工业机器人基本操作128
4.2.2 埃夫特工业机器人程序操作130
4.3 任务三 埃夫特工业机器人拆装132
4.3.1 拆装工具认识和使用132
4.3.2 机械电气识图基础143
4.3.3 拆装环境要求及注意事项155
4.3.4 埃夫特机器人的装配154
4.3.5 埃夫特机器人各轴的分拆160
4.4 考核评价163
4.5 思考与习题164
项目五 工业机器人系统维护与维修165
5.1 任务一 工业机器人系统维护保养165
5.1.1 日常检修及维护事项165
5.1.2 工业机器人系统的维护保养制度170
5.2 任务二 工业机器人系统故障检修172
5.2.1 工业机器人常见故障及分类172
5.2.2 工业机器人故障排除的思路173
5.2.3 故障排除应遵循的原则174
5.2.4 故障诊断与排除的基本方法175
5.3 考核评价
5.4 思考与习题
参考文献178